杨大文

教授 博导
Email: yangdw@tsinghua.edu.cn
通信地址:北京市海淀区清华大学水利水电工程系
邮编:100084
电话:010-62796976
传真:010-62796971

教育背景

1983.09-1988.07  清华大学水利工程系水资源工程专业,本科

1988.09-1990.07  清华大学水利工程系水力学及河流动力学专业,硕士

1995.10-1998.09  日本东京大学土木工程系水文学及水资源专业,博士


工作履历

1990.08-1992.12  铁道部科学研究院西南研究所,助理工程师

1993.01-1993.12  铁道部科学研究院西南研究所,工程师

1994.01-1995.09  铁道部科学研究院西南研究所水工水文室副主任,工程师

1995.10-1998.09  日本东京大学留学

1998.10-2001.03  日本东京大学生产技术研究所,博士后研究员

2001.04-2002.07  日本东京大学土木工程系,文部省教官、讲师

2002.08-2004.07  日本东京大学土木工程系,文部省教官、副教授

2004.07-现在     清华大学水利系教授、博士生导师


开设课程

1)《水文学原理与应用》(1)(本科生课程)
2)《水资源与水危机》(本科生课程)
3)《生态水文学》(研究生课程)

研究领域

水文学及水资源

科研项目


序号

项目类别

项目/课题名称(批准号)

经费

(万元)

起止年月

 

1

国家自然科学基金专项项目

黄河流域水循环规律与水土过程耦合效应(42041004

1418

2021.01-2024.12

2

国家自然科学基金重大项目课题

长江源及上游山区水循环

演变及其驱动机制研究(41890821

409.39

2019.01-2023.12

3

国家自然科学基金重点项目

黄河源冻土区生态水文过程对气候变化的响应(41630856

295

2017.01-2021.12

4

国家自然科学基金国际合作项目

气候变化下流域水文过程及水文通量变化:九龙江和昭披耶河对比研究(41661144031

423

2017.01-2020.12

5

国家自然科学基金重大研究计划集成项目

黑河流域上游生态水文过程耦合机理及模型研究(91225302

1078

 2013.01-2016.12

6

国家杰出青年基金

水文学及水资源(51025931

200

2011.01-2014.12

7

国家自然科学基金重点项目

我国北方典型流域对气候变化的生态水文响应研究(50939004

190

2010.01-2013.12

8

国家自然科学基金国际合项目

黄河下游大型引黄灌区的生态水文问题研究(50811140089

11.7

2008.04-2010.12

9

国家自然科学基金面上项目

基于水分与能量耦合循环机

理的灌区分布式水文模型研究(50679029

35

2007.01-2009.12


学术兼职

2002-2005  世界气候研究计划(WCRP)联合强化观测项目“Coordinated Enhanced Observation Period (CEOP)”项目协调办公室主任

2005-2013  国际水文科学协会(IAHS)10年研究计划“Prediction in Ungauged Basins (PUB)”科学委员会委员

2007-2014  国际水文科学协会(IAHS)陆地与大气耦合系统委员会 (ICCLAS)副主席

2006至今  国际水文科学协会(IAHS)中国国家委员会副主席

2006至今  《水文》编委

2017至今  《水利学报》编委

2008-2014  《Hydrological Science Journal》副编辑(Associate Editor)

2016-2018  《Journal of Hydrology》副编辑(Associate Editor)

2016至今  《Hydrological Research Letters》副编辑(Associate Editor)

2018至今  《Watershed Ecology and the Environment Environment》副编辑(Associate Editor)


奖励与荣誉

2003年  获国际水文科学协会(IAHS)杰出青年水文学家奖(Tison Award)

2009年  获北京市教学成果二等奖(排名第4)

2009年  北京市精品课程《水文学原理与应用》(课程负责人)

2009年  国家精品课程《水文学原理与应用》(课程负责人)

2010年  获国家自然科学基金杰出青年基金资助

2013年  获教育部长江学者特聘教授称号

2015年  获教育部自然科学一等奖(排名第1)

2015年  获大禹水利科学技术奖一等奖(排名第4)

2016年  获大禹水利科学技术奖二等奖(排名第3)


学术成果

TEXT BOOK

杨大文, 杨汉波, 雷慧闽. 流域水文学,清华大学出版社,北京,2014.


BOOK

1. 杨大文, 郑元润, 高冰, 李弘毅, 于澎涛, 高寒山区生态水文过程与耦合模拟,科学出版社, 2020.

2. 许迪, 刘钰, 杨大文, 张宝忠, 蒸散发尺度效应与时空尺度拓展, 科学出版社, 2015.

3. 丛振涛,杨大文,倪广恒,蒸发原理与应用,:科学出版社,2013.

4. 杨大文,丛振涛译,生态水文学(Eagleson, P. S.著,剑桥大学出版社),水利水电出版社,2007.

5. 杨大文,楠田哲也编著,水资源综合评价模型及其在黄河流域的应用,水利水电出版社,213pp, 2005.

6. 贾仰文,王浩,倪广恒,杨大文,王建华,秦大庸著,分布式流域水文模型原理及实践,水利水电出版社,283pp, 2005.


INTERNATIONAL JOURNAL PAPER

[1] Wang T., Yang D., Yang Y., Piao S., Li X, Cheng G., Fu B., 2020. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau, Science Advances, 6: eaaz3513.

[2] Zheng Guanheng, Yuting Yang, Dawen Yang*, Baptiste Dafflon, Yonghong Yi, Deliang Chen, Bing Gao, Taihua Wang, Ruijie Shi, Qingbai Wu, 2020. Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sensing of Environment, 247, 111927.

[3] Zhang Shulei, Yuting Yang, Tim McVicar, Lu Zhang, Dawen Yang, Xiaoyan Li, 2020. A proportionality-based multi-scale catchment water balance model and its global verification. Journal of Hydrology, 582, 124446.

[4] Luo Yuyan, Yuting Yang, Dawen Yang*, Shulei Zhang, 2020. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. Journal of Hydrology, 590, 125389.

[5] Yang Yuting, Shulei Zhang, Michael Roderick, Tim McVicar, Dawen Yang, Wenbin Liu, Xiaoyan Li, 2020. Comparing PDSI drought assessments using the traditional offline approach with direct climate model outputs. Hydrology and Earth System Sciences, 24, 2921-2930.

[6] Han Juntai, Yuting Yang*, Michael Roderick, Tim McVicar, Dawen Yang, Shulei Zhang, Hylke Beck, 2020. Assessing the steady-state assumption in water balance calculation across global catchments. Water Resources Research, 56(7), e2020WR027392.

[7] Zhang C., Yang Y., Yang D., Wang Z., Wu X., Zhang S., Zhang W., 2020. Vegetation Response to Elevated CO2 Slows Down the Eastward Movement of the 100th Meridian. Geophysical Research Letters, 47, e2020GL089681.

[8] Lu W., Lei H., Yang W., Yang D., 2020. Comparison of floods driven by tropical cyclones and monsoons in the southeastern coastal region of China. Journal of Hydrometeorology, 21: 1589-1602, DOI: 10.1175/JHM-D-20-0002.1.

[9] Shi R., Yang H., Yang D., 2020. Spatiotemporal variations in frozen ground and their impacts on hydrological components in the source region of the Yangtze River. Journal of Hydrology 590: 125237.

[10] Yang S., Yang D., Chen J., Santisirisomboon J., Lu W., Zhao B., 2020. A physical process and machine learning combined hydrological model for daily streamflow simulations of large watersheds with limited observation data. Journal of Hydrology, 590: 125206.

[11] Zheng G., Y Yang, D Yang, B Dafflon, H Lei and H Yang, 2019. Satellite-based simulation of soil freezing/thawing processes in the northeast Tibetan Plateau. Remote Sensing of Environment 231 (2019) 111269

[12] Wang Y, Chen J, and Yang D, 2019. Bayesian Assimilation of Multiscale Precipitation Data and Sparse Ground Gauge Observations in Mountainous Areas. Journal of Hydrometeorology. DOI: 10.1175/JHM-D-18-0218.1

[13] Wang T, Yang D, Fang B, Yang W, Qin Y, and Wang Y, 2019. Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau. Science of the Total Environment, 649: 515-525. DOI: 10.1016/j.scitotenv.2018.08.369

[14] Wang Y, Yang H, Gao B, Wang T, Qin Y, and Yang D, 2018. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. Journal of Hydrology, 564: 1153-1164. DOI: 10.1016/j.jhydrol.2018.07.078

[15] Zheng G., H Yang, H Lei, D Yang, T Wang, and Y Qin. 2018. Development of a physically based soil albedo parameterization for the Tibetan Plateau. Vadose Zone J. 17:170102. doi:10.2136/vzj2017.05.0102

[16] Gao, B., Yang, D., Qin, Y., Wang, Y., Li, H., Zhang, Y. and Zhang, T., 2018. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau. The Cryosphere, 12(2), 657.

[17] Wang, T., Yang, H., Yang, D., Qin, Y., and Wang, Y., 2018. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework. Journal of Hydrology, 558: 301-313. DOI: 10.1016/j.jhydrol.2018.01.050

[18] Wang, T., Yang, D., Qin, Y., Wang, Y., Chen, Y., Gao, B., and Yang, H., 2018. Historical and future changes of frozen ground in the upper Yellow River Basin. Global and Planetary Change, 162: 199-211. DOI: 10.1016/j.gloplacha.2018.01.009

[19] Zhang S., Yang, D., Yang, Y., Piao, S., Yang, H., Lei, H., and Fu, B. (2018). Excessive afforestation and soil drying on China’s Loess Plateau. Journal of Geophysical Research: Biogeosciences,123. doi: 10.1002/2017JG004038

[20] Sheng M., Lei, H., Jiao, Y., and Yang, D. (2017). Evaluation of the runoff and river routing schemes in the Community Land Model of the Yellow River basin. Journal of Advances in Modeling Earth Systems, 9. https://doi.org/10.1002/2017MS001026

[21] Qin Y., Yang, D., Gao, B., Wang, T., Chen, J., Chen, Y., Wang, Y., and Zheng, G., 2017. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Science of The Total Environment, 605–606: 830-841.

[22] Jiao Y., Lei, H., Yang, D., Huang, M., Liu, D. and Yuan, X., 2017. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. Journal of Hydrology, 551: 116–131.

[23] Chen Z., Lei, H., Yang, H., Yang, D. and Cao, Y., 2017. Historical and future trends in wetting and drying in 291 catchments across China. Hydrology and Earth System Sciences, 21(4): 2233-2248.

[24] Wang, Y., Yang, H., Yang, D., Qin, Y., Gao, B., and Cong, Z. (2017). Spatial Interpolation of Daily Precipitation in a High Mountainous Watershed based on Gauge Observations and a Regional Climate Model Simulation. Journal of Hydrometeorology. DOI: 10.1175/JHM-D-16-0089.1

[25] Gong T, Lei H, Yang D, et al. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland[J]. Hydrology & Earth System Sciences, 2017, 21(2):1-49.

[26] Qin Yue, Lei Huimin, Yang Dawen, Gao Bing, Wang Yuhan, Cong Zhentao, Fan Wenjie. (2016). Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. Journal of Hydrology, 542C, 204-221. DOI: 10.1016/j.jhydrol.2016.09.008

[27] Wang Ai, Tang Lihua, Yang Dawen, Lei Huimin, 2016, Spatial-temporal variation of net anthropogenic nitrogen inputs in the upper Yangtze River basin from 1990 to 2012. Science China: Earth Sciences, DOI: http://dx.doi.org/10.1007/s11430-016-0014-6.

[28] Huang Zhongwei, Yang Hanbo, Yang Dawen (2016). Dominant climatic factors driving annual runoff changes at the catchment scale across China. Hydrol. Earth Syst. Sci., 20, 2573-2587, DOI:10.5194/hess-20-2573-2016.

[29] Wang Siru, Lei Huimin, Duan Limin, Liu Tingxi, Yang Dawen. (2016). Attribution of the vegetation trends in a typical desertified watershed of northeast China over the past three decades, Ecohydrology, DOI: 10.1002/eco.1748.

[30] Miao Qinghua, Yang Dawen, Yang Hanbo, Li Zhe. (2016). Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model, Journal of Hydrology, DOI: 10.1016/j.jhydrol.2016.04.054.

[31] Zhang Shulei, Yang Hanbo, Yang Dawen, Jayawadena AW. (2016). Quantifying the effect of vegetation change on the regional water balance within the Budyko Framework. Geophysical Research Letters, DOI: 10.1002/2015GL066952.

[32] Gao Bing, Qin Yue, Wang Yuhan, Yang Dawen, Zheng Yuanrun. (2016). Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China. Forests, 7(1), DOI:10.3390/f7010010.

[33] Zhang Shulei, Yang Dawen, Jayawardena, A. W., Xu Xiangyu, Yang Hanbo (2015). Hydrological change driven by human activities and climate variation and its spatial variability in Huaihe Basin, China. Hydrological Sciences Journal. DOI:10.1080/02626667.2015.1035657.

[34] Xu Kai, Yang Dawen, Xu Xiangyu, Lei Huimin (2015). Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. Journal of Hydrology. 527: 630-640. DOI:10.1016/j.jhydrol.2015.05.030.

[35] Yang Dawen, Gao Bing, Jiao Yang, Lei Huimin, Zhang Yanlin, Yang Hanbo, Cong Zhentao (2015). A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Science China: Earth Sciences, 58: 36-45. DOI:10.1007/s11430-014-5029-7.

[36] Li Zhe, Yang Dawen, Gao Bing, Jiao Yang, Hong Yang, Xu Tao (2015). Multiscale Hydrologic Applications of the Latest Satellite Precipitation Products in the Yangtze River Basin using a Distributed Hydrologic Model. Journal of Hydrometeorology, 16(1): 407-426.

[37] Yang Hanbo, Li Zhe, Li Mingliang, and Yang Dawen (2015). Inconsistency in Chinese solar radiation data caused by instrument replacement: Quantification based on pan evaporation observations. Journal of Geophysical Research-Atmosphere, doi: 10.1002/2014JD023015.

[38] Hanbo Yang, Dawen Yang and Qingfang Hu (2014), An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff. Water Resources Research. DOI: 10.1002/2014WR015451.

[39] Lei Huimin, Dawen Yang, Hanbo Yang, Zaijian Yuan and Huafang Lv (2014), Simulated impacts of irrigation on evapotranspiration in a strongly exploited region: a case study of the Haihe River basin, China. Hydrological Processes. DOI: 10.1002/hyp.10402.

[40] Xu Kai, Dawen Yang, Hanbo Yang, Zhe Li, Yue Qin, Yan Shen (2015), Spatio-temporal variation of drought in China during 1961-2012: A climatic perspective, Journal of Hydrology, 526:253-264. DOI: 10.1016/j.jhydrol.2014.09.047.

[41] Qin Y., Yang, D., Lei, H., Xu, K., Xu, X., 2014. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960-2010. Journal of Hydrology, 526:55-67. DOI: 10.1016/j.jhydrol.2014.09.068.

[42] Gong W., D. Yang, H. V. Gupta, and G. Nearing (2014), Estimating information entropy for hydrological data: One-dimensional case, Water Resour Res, 50(6), 5003-5018, doi:10.1002/2014WR015874.

[43] Yang Hanbo, Yang Dawen, Hu Qingfang, and Lv Huafang (2014). Spatial variability of the trends in climatic variables China during 1961-2010. Theoretical and Applied Climatology, DOI: 10.1007/s00704-014-1208-x

[44] Yang Hanbo, Qi Jia, Xu Xiangyu, Yang Dawen, and Lv Huafang (2014). The regional variation in climate elasticity and climate contribution to runoff across China. Journal of Hydrology. 517: 607-615.

[45] Lei H., M. Huang, L. R. Leung, et al.(2014) Sensitivity of global terrestrial gross primary production to hydrological states simulated by the Community Land Model using two runoff parameterizations. J. Adv. Model. Earth Syst., 06, doi:10.1002/2013MS000252.

[46] Zhang Q., Manzoni S., Katul G., Porporato A., Yang D., The hysteretic evapotranspiration – vapor pressure deficit relation, Journal of Geophysical Research - Biogeoscience,119(2):125-140, DOI: 10.1002/2013JG002484.

[47] Hu Qingfang, Dawen Yang (2013). Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges. International Journal of Remote Sensing, accepted.

[48] Li Zhe, Dawen Yang, Yang Hong, Jian Zhang, Youcun Qi, 2014: Characterizing Spatiotemporal Variations of Hourly Rainfall by Gauge and Radar in the Mountainous Three Gorges Region. J. Appl. Meteor. Climatol., 53, 873–889.

[49] Lei H., Yang D., Huang Maoyi,  2014, Impacts of climate change and vegetation dynamics on runoff in the mountainous region of the Haihe River basin in the past five decades, Journal of Hydrology, 511,786-799.

[50] Xu Xiangyu, Dawen Yang, Hanbo Yang, Huimin Lei, 2014. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin,Journal of Hydrology, 510:530–540.

[51] Zhao T., Zhao J., Lund J., and Yang D. (2014). Optimal Hedging Rules for Reservoir Flood Operation from Forecast Uncertainties. J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000432

[52] Xu X, Yang H, Yang D and Ma H(2013). Assessing the impacts of climate variability and human activities on annual runoff in the Luan River Basin, China. Hydrology Research, 44(5): 940-952. doi:10.2166/nh.2013.144.

[53] Li Zhe, Dawen Yang, Yang Hong (2013). Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. Journal of Hydrology, 500:157-169.

[54] Chen He, Yang Dawen, Hong Yang, JonathanJ. Gourley, Yu Zhang (2013). Hydrological data assimilation with the EnsembleSquare-Root-Filter: Use of streamflow observations to update model states for real-timeflash flood forecasting. Advances in Water Resources,59:209-220.

[55] Yang Dawen, Chen He, Lei Huimin (2013). Analysis of the diurnal pattern of evaporative fractionand its controlling factors over croplands in the Northern China. Journal of Integrative Agriculture,12(8):1316-1329.

[56] Zhao T. T. G., Zhao J. S., Yang D. W., and Wang H.(2013), Generalized marginale model of the uncertainty evolution of streamflow forecasts, Advances in Water Resources,57:41-51.

[57] Lei HM, Yang DW, Cai JF, et al. Long-term variability of the carbon balance in a large irrigated area along the lower Yellow River from 1984 to 2006. Science China: Earth Sciences, 2013, 56: 671–683, doi: 10.1007/s11430-012-4473-5.

[58] Gao Bing, Yang Dawen, Yang Hanbo (2013),Impact of the Three Gorges Dam on flow regime in the middle and lower Yangtze River. Quaternary International, 304: 43-50.

[59] Hu QingFang, DaWen Yang, YinTang Wang, HanBo Yang. Accuracy and spatio-temporalvariation of high resolution satellite rainfall estimate over the GanjiangRiver Basin, Science China Technological Sciences, 2013, 56(4):853-865.

[60] Zhang Quan, Lei Huimin, Yang Dawen, 2013, Seasonal variations in soil respiration, heterotrophic respiration and autotrophic respiration of a wheat and maize rotation cropland in the North China Plain, Agricultural and Forest Meteorology, 180: 34–43.

[61] Gong W., H. V. Gupta, D. Yang, K. Sricharan, and A. O. Hero III (2013), Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach, Water Resour. Res., 49, 2253–2273, doi:10.1002/wrcr.20161.

[62] Zhao T. T. G., Zhao J. S., and Yang D. W (2012)., Improved dynamic programming for reservoir operation optimization with a concave objective function, Journal of Water Resources Planning and Management,138(6):590-596.

[63] Yang H., Yang, D. and Lei, Z. (2012), Seasonal variability of the complementary relationship in the Asian monsoon region. Hydrol. Process. doi: 10.1002/hyp.9400.

[64] Li Mingliang, Dawen Yang, Jinsong Chen, and Susan S. Hubbard (2012), Calibration of a Distributed Flood Forecasting Model with Input Uncertainty Using a Bayesian Framework. Water Resources Research, 48, W08510, doi:10.1029/2010WR010062.

[65] Lei H. and Yang, D(2012). Combining Crop Coefficient of Winter Wheat and Summer Maize with Remotely-Sensed Vegetation Index for Estimating Evapotranspiration in the North China Plain. J. Hydrol. Eng.. doi: 10.1061/(ASCE)HE.1943-5584.0000765.

[66] Gao B, Yang D, Zhao T, Yang H (2012), Changes in the eco-flow metrics of Upper Yangtze River from 1961 to 2008. J Hydrol. 448-449(2), 30-38.

[67] Zhao Tongtiegang, Yang Dawen, Cai Ximing, et. al., (2012). Identifying effective forecast horizon for real-time reservoir operation under a limited inflow forecast, Water Resources Research, 48, W01540, doi:10.1029/2011WR010623.

[68] Xu X., D. Yang and M. Sivapalan (2012). Assessing the impact of climate variability on catchment water balance and vegetation cover. Hydrol. Earth Syst. Sci., 16, 43–58, doi:10.5194/hess-16-43-2012.

[69] Yang HB and DW Yang (2012). Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology, Journal of Hydrology, 414–415:184–193, doi:10.1016/j.jhydrol.2011.10.043.

[70] Tang LH, DW Yang, HP Hu, B Gao (2011), Detecting the effect of land-use change on streamflow, sediment and nutrient losses by distributed hydrological simulation. Journal of Hydrology, 409: 172-182.

[71] Yang HB and DW Yang (2011), Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resources Research, 47, W07526, doi:10.1029/2010WR009287.

[72] Yi YH & DW Yang (2011), An operational method to estimate evapotranspiration using MODIS data during winter wheat growing season. International Journal of Remote Sensing, 32(17): 4915-4932, DOI:10.1080/01431161.2010.492252.

[73] Huimin Lei, Dawen Yang, Yanjun Shen, Yu Liu and Yucui Zhang (2011), Simulation of evapotranspiration and carbon dioxide flux in the wheat-maize rotation croplands of the North China Plain using the simple biosphere model. Hydrological Processes, 25, DOI: 10.1002/hyp.8026.

[74] Ma Huan, Dawen Yang, Soon Keat Tan, Bing Gao, Qingfang Hua (2010). Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. Journal of Hydrology, 389, 317–324. 

[75] Cong Zhentao, Jingjing Zhao, Dawen Yang, Guangheng Ni (2010). Understanding the hydrological trends of river basins in China. Journal of Hydrology, 388, 350–356. (IDS: 627FK)

[76] Lei Huimin, Dawen Yang, E. Lokupitiya, and Yanjun Shen (2010). Coupling land surface and crop growth models for predicting evapotranspiration and carbon exchange in wheat-maize rotation croplands. Biogeosciences, 7, 3363-3375.

[77] Yang DW, H Chen & HM Lei (2010), Estimation of evapotranspiration using a remote sensing model over agriculture land in the North China Plain. International Journal of Remote Sensing, 31(14), 3783–3798.

[78] Lei HM & DW Yang (2010), Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain. Global Change Biology, 16, 2944–2957, doi: 10.1111/j.1365-2486.2009.02136.x.

[79] Lei HM & DW Yang (2010), Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agricultural and Forest Meteorology, 150, 581-589

[80] Valeriano OCS, T Koike, K Yang and DW Yang (2010), Optimal Dam Operation during Flood Season using a Distributed Hydrological Model and a Heuristic Algorithm. Journal of Hydrologic Engineering, doi:10.1061/(ASCE)HE.1943-5584.0000212.

[81] Wang L., ZJ Wang, T Koike, H Yin, DW Yang and S. He (2010), The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change. Hydrological Processes, 24, 1123–1132, DOI: 10.1002/hyp.7566.

[82] Yang DW, WW Shao, PJF Yeh, HB Yang, S Kanae & T Oki (2009), Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resources Research, 45, W00A14, doi:10.1029/2008WR006948.

[83] Shao WW, DW Yang, HP Hu and K Sanbongi (2009), Water resources allocation considering the flexible limit to water shortage -- a case study in the Yellow River basin of China, Water Resources Management, 23 (5), 869-880, DOI 10.1007/s11269-008-9304-2.

[84] Yang HB, DW Yang, ZD Lei, FB Sun and ZT Cong (2009), Variability of complementary relationship and its mechanism on different time scales, Science in China Series E: Technological Sciences, vol. 52 (4), 1059-1067, doi:10.1007/s11431-008-0197-3.

[85] Cong ZT, DW Yang, B Gao, HB Yang, and HP Hu (2009), Hydrological trend analysis in the Yellow River basin using a distributed hydrological model, Water Resources Research, 45, W00A13, doi:10.1029/2008WR006852.

[86] Cong ZT, DW Yang, GH Ni (2009), Does evaporation paradox exist in China? HYDROLOGY AND EARTH SYSTEM SCIENCES, 13 (3), 357-366. 

[87] Wang L, T Koike, DW Yang & K Yang (2009), Improving the hydrology of the Simple Biosphere Model 2 and its evaluation within the framework of a distributed hydrological model, Hydrological Sciences Journal, 54 (6), 989-1006.

[88] Valeriano OCS, T Koike, DW Yang, CT Nyunt, VK Duong & LC Nguyen (2009), Flood simulation using different sources of rainfall in the Huong River, Vietnam. Hydrological Sciences Journal, 54 (5), 909-917.

[89] Han SJ, HP Hu, DW Yang & QC Liu (2009), Differences in changes of potential evaporation in the mountainous and oasis regions of the Tarim basin, northwest China, Science in China Series E: Technological Sciences, 52 (7), 1981-1989. DOI: 10.1007/s11431-009-0123-3.

[90] Wang L., T Koike, K Yang, TJ Jackson, R Bindlish & DW Yang (2009), Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99), Journal of Geophysical Research - Atmospheres, doi:10.1029/2008JD010800.

[91] Yang, HB DW Yang, ZD Lei & FB Sun (2008), New analytical derivation of the mean annual water-energy balance equation. Water Resources Research, 44, W03410, doi:10.1029/2007WR006135.

[92] Lei HM, DW Yang, SJ Schymanski & M Sivapalan (2008), Modeling the crop transpiration using an optimality-based approach, Science in China Series E: Technological Sciences, vol. 51, Supp. II, 1-16, doi:10.1007/s11431-008-6008-z.

[93] Yi YH, DW Yang, DY Chen & JF Huang (2008), Evaluation of MODIS surface reflectance products for wheat LAI retrieval, ISPRS Journal of Photogrammetry & Remote Sensing, 63 (6), 661–677, doi:10.1016/j.isprsjprs.2008.04.004.

[94] Xu JJ, DW Yang, ZD Lei, J Chen & WJ Yang (2008), Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years. Quaternary International, 186: 32-42, doi:10.1016/j.quaint.2007.10.014. 

[95] Yang DW, FB Sun, ZY Liu, ZT Cong, GH Ni & ZD Lei (2007), Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resources Research, 43, W04426, doi:10.1029/2006WR005224.

[96] Yi YH, DW Yang, DY Chen & JF Huang (2007), Retrieving crop physiological parameters and assessing water deficiency using MODIS data during winter wheat growing period, Canadian Journal of Remote Sensing, 33(3), 189-202.

[97] Ni GH, ZY Liu, ZD Lei, DW Yang & Wang L (2007), Continuous simulation of water and soil erosion in a small watershed of the Loess Plateau with a distributed model, Journal of Hydrologic Engineering, 13 (5), 392-399. DOI: 10.1061/(ASCE)1084-0699(2008)13:5(392).

[98] Yang DW, FB Sun, ZY Liu, ZT Cong & ZD Lei (2006), Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophysical Research Letters, 33, L18402, doi:10.1029/2006GL027657.

[99] Yang, D., G. Ni, S. Kanae, C. LI, and T. Kusuda (2005). Water resources variability from the past to future in the Yellow River of China, IAHS publication, 295, 174-182.

[100] Yang D., C. Li, B. Ye, H. Hu, H. Zhang, Z. Liu and J. Xia (2005). Chinese Perspectives on PUB and the Working Group Initiative, IAHS publication, 301

[101] Yang DW, T Koike and H Tanizawa (2004), Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan. Hydrological Processes, 18, 3119-3132, doi:10.1002/hyp.5752.

[102] Yang, DW, C Li, HP Hu, ZD Lei, SX Yang, T Kusuda, T Koike and K Musiake (2004), Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research, 40, W06502, doi:10.102

[103] Yang, D. and K. Musiake (2003). A continental scale hydrological model using distributed approach and its application to Asia. Hydrological Processes, 17, 2855-2869.

[104] Yang, D., S. Kanae, T. Oki, T. Koike, K. Musiake (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17, 2913-2928.

[105] Yang, D., T. Koike and H. Tanizawa (2003). Effect of precipitation spatial distribution on the hydrological response in the upper Tone River of Japan. IAHS publication, no. 282, 194-202.

[106] Yang, D., C. Li, K. Musiake and T. Kusuda (2003). Analysis of Water Resources in the Yellow River Basin in Last Century. IAHS publication, no. 280, 70-78.

[107] Yang, K., T. Koike and D. Yang (2003). Surface flux parameterization in the Tibetan Plateau. Boundary-Layer Meteorology, 116, 245-262.

[108] Yang, D., S. Herath and K. Musiake (2002). A Hillslope-based hydrological model using catchment area and width functions. Hydrological Sciences Journal, 47(1), 49-65.

[109] Oki, T., Y. Agata, S. Kanae, T. Saruhashi, D. Yang, and K. Musiake (2001). Global assessment of current water resources using total runoff integrating pathways. Hydrological Sciences Journal, 46(6), 983–995.

[110] Yang, D., S. Kanae, T. Oki, and K. Musiake (2001). Expanding the distributed hydrological modelling to continental scale. IAHS publication, no. 270, 125-134.

[111] Yang, D., S. Herath, K. Musiake (2001). Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation, Hydrological Processes, 15, 2085-2099.

[112] Yang, D., Herath, S., T. Oki and K. Musiake (2001). Application of distributed hydrological model in Asian monsoon tropic region with a perspective of coupling with atmospheric models, Journal of the Meteorological Society of Japan (JMSJ), 79(1B), 373-385.

[113] Yang, D., S. Herath, and K. Musiake (2000). Comparison of different distributed hydrological models for characterization of catchment spatial variability, Hydrological Processes, 14, 403-416.



Baidu
sogou